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Consideration is given to the statistical theory of friction between the probe of an atomic-force microscope
and the atomically smooth surface of a solid body. Based on the calculations performed it has been inferred
that the process of friction in nanocontacts is fractal. It has been shown that the fractal integro-differentiation
formalism can be applied to analysis of the processes of interaction in nanocontacts.

The linear dependence of the friction force on the load (Amonton’s law) is caused by the interaction and su-
perposition of individual multiple micro- and nanocontacts of rubbing surfaces of macroscopic bodies [1]. The total
area of contact of these surfaces is several orders of magnitude smaller than the nominal area. To investigate friction
in nanocontacts one currently uses an atomic-force microscope operating in the regime of recording of lateral forces
[2]. The device allows measurement of the forces with an accuracy of up to 10−12 N.

Despite certain advances made recently in "low-dimension physics," there has been no satisfactory quantitative
theory of nanostructural-friction forces as yet. Thus, according to the adhesion [2] and dislocation [3] mechanisms of
friction, the stick-slip sliding of a nanoprobe over the surface of a solid body is accompanied by the formation and
breaking of individual interatomic bonds. In both cases, for the friction force one employs the formula

F = τS , (1)

where S = πR2. The experiments with an atomic-force microscope have shown that the sliding of a nanoprobe over
the surface of a solid body is characterized in most cases by a low value of the friction force and the anomalous be-
havior of the friction–load dependence [2]. However it is impossible to explain these phenomena using formula (1).

In the present work, we give statistical consideration to the process of dry friction in the system probe–sur-
face. The essence of the method is that it assumes a random character of formation and breaking of individual intera-
tomic bonds in the process of sliding. With the use of this assumption we derive a new formula for the force of
friction between the nanoprobe and the solid-body surface, which generalizes formula (1).

Let p(S) be the probability of absence of interatomic bonds in the contact of area S, satisfying the condition

lim
   S→ ∞

 p(S)  = 0. As the contact area successively increases, this probability decreases so that, by virtue of statistical in-

dependence, the probability multiplication theorem will hold: p(S + ∆S) = p(S)p(∆S). Computing the logarithmic deriva-

tives of this expression with respect to S, we obtain the differential equation for the unknown function p(∆S):

d ln (p (S + ∆S))
dS

 = 
d ln (p (S))

dS
 = − ϑ  . (2)

The solution of (2) has the form

p (S) = exp (− ϑS) . (3)

The probability p(S) must, apparently, depend on the interatomic-bond energy. In the most general form, this depend-
ence is taken into account by the Weibull distribution [4], which is obtained from (3) at ϑ  = const Ea, where a > 0.
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The probability that there are interatomic bonds in the region of contact is equal to q(S, E) = 1 − p(S, E). As a result,
for the probability q(S, E) we will have the following formula:

q (S, E) = 1 − p (S, E) = 1 − exp 

− 

S
S0

 


E
E0





a



 , (4)

where we have passed to dimensionless variables using the parameters S0 and E0. With account for the distribution
function (4) we find the average interatomic-bond energy

sEit = ∫ 
0

∞

E 
dq (S, E)

dE
 dE = a ∫ 

0

∞
S
S0

 


E
E0





a

 exp 

− 

S
S0

 


E
E0





a



 dE . (5)

Integrating (5), we obtain

sEit = E0Γ (1 + 1 ⁄ a) 




S0

S




1 ⁄ a

 , (6)

where Γ(1 + 1 ⁄ a) is the Euler gamma function. We note that in actual contacts we always have deformation. Its pres-
ence in no way disturbs the generality of the above considerations. Expression (6) is very simply interpreted with the
use of the notion of fractal dimension [5]. As applied to our problem, the latter is introduced using the relation Nξd

= 1. From this determination, we have: N = ξ−d = (R ⁄ ra)
d and d = ln (N)/ln (R ⁄ ra) (ra D 0.1−0.2 nm). With allowance

for what has been said above, we find from (6) the average energy which must be expended in breaking the contact:

sEt = sEit N = E0Γ (1 + d ⁄ 2) = sEit 


S
S0





1 ⁄ a
 = sEit 



R
ra





d

 , (7)

where d = 2/a. The necessity of introducing the notion of fractal dimension for explanation of different experiments
with an atomic-force microscope has been suggested in [3]. As the above calculations show, this is attained by using
the statistical approach and the Weibull distribution, a particular case of which is a Boltzmann-type distribution with
parameters a = 1 and E0 = sEt.

Let us calculate the force of friction between the nanoprobe and the sample. If we assume that the atoms of
the rubbing bodies lose their bond when they are separated by a distance of 2ra (equal to the characteristic bond
length), the force to be applied to break the entire contact will be equal to F = sEt ⁄ 2ra. Numerous experiments with
an atomic-force microscope show that this force is not equal to zero in the absence of the external load, which is
caused by the residual action of the adhesive force [2, 3]. In calculating the contact radius, the adhesive force is taken
into account in the macroscopic approximation of Deryagin, Muller, and Toropov (DMT approximation) [6]. Thus,
with account for (7) we obtain the following formula for the friction force:

F = 
sEit

2ra
 N = 

sEit

2ra
 


R
ra





d

 = 
π sEit

2ra
d+1

 




r0

K
 (F
M

 + 2πr0W)




d ⁄ 3

 , (8)

1

K
 = 

3

4
 




1 − ν1
2

µ1
 + 

1 − ν2
2

µ2




 .

We emphasize that the contact zone formed by the standard probe of an atomic-force microscope with a radius of cur-
vature of the tip of tens of nanometers contains tens to hundreds of thousands of atoms. Fluctuations of the physical
parameters of contact will, apparently, be small as compared to the average values of these parameters. In this case,
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the use of the DMT approximation in which such macroscopic parameters as the elastic moduli and the Poisson coef-
ficients of the probe and the sample are employed is justified.

It is quite obvious that the formula (8) obtained generalizes formula (1). It yields that with a change of unity
to three in the fractal dimension of the nanocontact the exponent of the dependence friction force–load changes from
1/3 to 1, which explains all the available contradictory experimental results [2]. Thus, the power dependence of the
friction force on the load with exponents of 0.1 to 0.3 is revealed in computer modeling of the interaction of open
single-layer nanontubes with a (100)-type diamond face [7]. Within the framework of the model in question, this cor-
responds to the fractal dimension d ≤ 1. In the case of a regular two-dimensional contact (d = 2), expression (8) pre-
cisely yields formula (4.4) from [2] and formula (4) from [5], which describe hard contacts. If spatially three-dimen-
sional structures (solid atomic clusters) are formed due to the wear, chemical reactions, or phase transformations in the
region of contact, then d → 3 and the corresponding dependence friction–load becomes linear. Such a situation, for ex-
ample, has been observed in atomic-force microscopic experiments on alkali halide crystals [2]. Furthermore, it is per-
tinent to note here that friction at the macroscopic level, when the dependence of the friction force on the load is
nearly linear, results in the formation of fractal surfaces with a dimension of d > 2 [8].

In the present work, we have noted a very interesting fact. It was shown that expression (7) can be obtained
with the use of the fractional integro-differential formalism, i.e., the mathematical apparatus widely used in the fractal
theory. We demonstrate this conclusion, employing the notion of surface energy γ. In accordance with thermodynamic
determination, we have

γ = 
dG
dS

 = 
1
S0

 
dG
dΩ

 , (9)

where Ω = S ⁄ S0. Employing the composition law for a fractional derivative [9, 10], we can rewrite formula (9) as fol-
lows:

γS0 = D0Ω
1 ⁄ a E0 , (10)

where

D0Ω
1 ⁄ a E0 = 

1

Γ (1 + [1 ⁄ a] − 1 ⁄ a)
 

d
[1 ⁄ a]+1

dΩ[1 ⁄ a]+1
  ∫ 

0

Ω

 
E0dΩ′

(Ω − Ω′)1 ⁄ a−[1 ⁄ a]
 ,   E0 = D0Ω

1−1 ⁄ aG .

Here D0Ω
m  is the operator of fractional differentiation of Riemann and Liouville of order n, while the square brackets

denote the integral part of the number. Since the surface energy γ is independent of Ω (which follows from physical
considerations), the function represented in the form

E0 = 
γS0

Γ (1 + 1 ⁄ a)
 Ω1 ⁄ a , (11)

will be the solution of Eq. (10). Formula (11) yields the expression for the average energy of breaking of the contact:

sEt = E0Γ (1 + 1 ⁄ a) = γS0Ω
1 ⁄ a = γS0 



S
S0





1 ⁄ a
 = sEit 



R
ra





2 ⁄ a
 , (12)

where S = πR2, S0 = πra
2, and sEit = γπra

2. It can be seen that the obtained formula (12) coincides with (7) for a =
2/d. The correspondence between the statistical approach and the approach based on the fractional integro-differentia-
tion formalism comes as no surprise, in principle. In particular, it is well known [9] that the function p(S, E) (Weibull
distribution) determined by expression (3) is closely related to the solutions of different differential equations of frac-
tional order. Thus, we can draw the following important conclusion: the use of fractional integro-differentiation is
mathematically equivalent to the passage from the thermodynamic description of a system to a statistical description.
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NOTATION

r0, radius of curvature of the tip of the probe; F, friction force; FM, load; W, specific energy of adhesion of
flat surfaces; µ1,2, elastic moduli of the probe and the sample; ν1,2, Poisson coefficient; G, Gibbs thermodynamic po-
tential; Ω, dimensionless contact area; d, fractal dimension of the contact; ra, reduced atomic radius; τ, tangential
stress; S, contact area; R, contact radius; γ, surface energy; E, interatomic-bond energy; sEit, average interatomic-bond
energy; sEt, average energy of breaking of the contact; ξ, similarity parameter; p(S), probability of absence of intera-
tomic bonds in the region of contact; q(S), probability of presence of interatomic bonds in the region of contact; ϑ ,
positive constant; Γ, Euler gamma function; N, number of interatomic bonds in the region of contact; K, reduced elas-
tic module; S0, E0, and a, parameters of the Weibull distribution. Subscripts: a, atomic; i, individual interatomic bond;
m, order of a fractional derivative; 0, parameters of the Weibull distribution.
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